Choosing the software to drive your digital inkjet press

When developing your first or next digital press, the software you use to drive it will be a key factor in its success, both for the data rates and output quality you can achieve. The time it takes to get your press to market based on the engineering effort involved to deliver and integrate that software is also a consideration.

A simple user interface to get  you started

The Press Operator Controller (POC) is an example front end or user interface available with Harlequin Direct™ , the software solution that drives printhead electronics at ultra-high data rates while retaining high output quality. The POC provides you with an initial working system, so you’re up and running without any significant in-house software development. We provide you with the source code so that you have the option to update and integrate it as part of your production system.

I have created a short video to show you its main functions:

You can find out more information about the Direct™ range of products by visiting our website: https://www.globalgraphics.com/products/direct

Further reading about considerations when choosing your digital inkjet press:

  1. How do I choose the right PC specification for my digital press workflow
  2. Future-proofing your digital press to cope with rising data rates
  3. Looking to reduce errors with simple job management, keep control of color, and run at ultra-high speed for jobs with variable data?

About the author

Ian Bolton, Product Manager, Direct
Ian Bolton, Product Manager – Direct

Ian has over 15 years’ experience in industry as a software engineer focusing on high performance. With a passion for problem-solving, Ian’s role as product manager for the Direct range gives him the opportunity to work with printer OEMs and break down any new technology barriers that may be preventing them from reaching their digital printer’s full potential.

Be the first to receive our news updates and product news. Why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedIn and Twitter

Why does optimization of VDP jobs matter?

Would you fill your brand-new Ferrari with cheap and inferior fuel? It’s a question posed by Martin Bailey in his new guide: ‘Full Speed Ahead – how to make variable data PDF files that won’t slow your digital press’. It’s an analogy he uses to explain the importance of putting well-constructed PDF files through your DFE so that they don’t disrupt the printing process and the DFE runs as efficiently as possible. 

Here are Martin’s recommendations to help you avoid making jobs that delay the printing process, so you can be assured that you’ll meet your print deadline reliably and achieve your printing goals effectively:

If you’re printing work that doesn’t make use of variable data on a digital press, you’re probably producing short runs. If you weren’t, you’d be more likely to choose an offset or flexo press instead. But “short runs” very rarely means a single copy.

Let’s assume that you’re printing, for example, 50 copies of a series of booklets, or of an imposed form of labels. In this case the DFE on your digital press only needs to RIP each PDF page once.

To continue the example, let’s assume that you’re printing on a press that can produce 100 pages per minute (or the equivalent area for labels etc.). If all your jobs are 50 copies long, you therefore need to RIP jobs at only two pages per minute (100ppm/50 copies). Once a job is fully RIPped and the copies are running on press you have plenty of time to get the next job prepared before the current one clears the press.

But VDP jobs place additional demands on the processing power available in a DFE because most pages are different to every other page and must therefore each be RIPped separately. If you’re printing at 100 pages per minute the DFE must RIP at 100 pages per minute; fifty times faster than it needed to process for fifty copies of a static job.

Each minor inefficiency in a VDP job will often only add between a few milliseconds and a second or two to the processing of each page, but those times need to be multiplied up by the number of pages in the job. An individual delay of half a second on every page of a 10,000-page job adds up to around an hour and a half for the whole job. For a really big job of a million pages it only takes an extra tenth of a second per page to add 24 hours to the total processing time.

If you’re printing at 120ppm the DFE must process each page in an average of half a second or less to keep up with the press. The fastest continuous feed inkjet presses at the time of writing are capable of printing an area equivalent to over 13,000 pages per minute, which means each page must be processed in just over 4ms. It doesn’t take much of a slow-down to start impacting throughput.

If you’re involved in this kind of calculation you may find the digital press data rate calculator at https://blog.globalgraphics.com/tag/data-rate/ useful:

Global Graphics Software’s digital press data rate calculator.
Global Graphics Software’s digital press data rate calculator.

This extra load has led DFE builders to develop a variety of optimizations. Most of these work by reducing the amount of data that must be RIPped. But even with those optimizations a complex VDP job typically requires significantly more processing power than a ‘static’ job where every copy is the same.

The amount of processing required to prepare a PDF file for print in a DFE can vary hugely without affecting the visual appearance of the printed result, depending on how it is constructed.

Poorly constructed PDF files can therefore impact a print service provider in one or both of two ways:

  • Output is not achieved at engine speed, reducing return on investment (ROI) because fewer jobs can be produced per shift. In extreme cases when printing on a continuous feed (web-fed) press a failure to deliver rasters for printing fast enough can also lead to media wastage and may confuse in-line or near-line finishing.
  • In order to compensate for jobs that take longer to process in the DFE, press vendors often provide more hardware to expand the processing capability, increasing the bill of materials, and therefore the capital cost of the DFE.

Once the press is installed and running the production manager will usually calculate and tune their understanding of how many jobs of what type can be printed in a shift. Customer services representatives work to ensure that customer expectations are set appropriately, and the company falls into a regular pattern. Most jobs are quoted on an acceptable turn-round time and delivered on schedule.

Depending on how many presses the print site has, and how they are connected to one or more DFEs this may lead to a press sitting idle, waiting for pages to print. It may also delay other jobs in the queue or mean that they must be moved to a different press. Moving jobs at the last minute may not be easy if the presses available are not identical. Different presses may require different print streams or imposition and there may be limitations on stock availability, etc.

Many jobs have tight deadlines on delivery schedules; they may need to be ready for a specific time, with penalties for late delivery, or the potential for reduced return for the marketing department behind a direct mail campaign. Brand owners may be ordering labels or cartons on a just in time (JIT) plan, and there may be consequences for late delivery ranging from an annoyed customer to penalty clauses being invoked.

Those problems for the print service provider percolate upstream to brand owners and other groups commissioning digital print. Producing an inefficiently constructed PDF file will increase the risk that your job will not be delivered by the expected time.

You shouldn’t take these recommendations as suggesting that the DFE on any press is inadequate. Think of it as the equivalent of a suggestion that you should not fill your brand-new Ferrari with cheap and inferior fuel!

 

Full Speed Ahead: how to make variable data PDF files that won't slow your digital press edited by Global Graphics Software

The above is an excerpt from Full Speed Ahead: how to make variable data PDF files that won’t slow your digital press. The guide is designed to help you avoid making jobs that disrupt and delay the printing process, increasing the probability of everyone involved in delivering the printed piece; hitting their deadlines reliably and achieving their goals effectively.

DOWNLOAD THE FREE FULL GUIDE HERE: https://bit.ly/fsa-pdf

To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

About the author:

Martin Bailey, CTO, Global Graphics Software
Martin Bailey, CTO, Global Graphics Software

Martin Bailey first joined what has now become Global Graphics Software in the early nineties, and has worked in customer support, development and product management for the Harlequin RIP as well as becoming the company’s Chief Technology Officer. During that time he’s also been actively involved in a number of print-related standards activities, including chairing CIP4, CGATS and the ISO PDF/X committee. He’s currently the primary UK expert to the ISO committees maintaining and developing PDF and PDF/VT.

RIP technology replacement achieves a faster development time, performance and quality benchmarks

 VIR Softech replaces RIP software for major print OEM and achieves a faster development time, performance and quality benchmarks

When a major print OEM switched from a market-leading RIP technology to the Harlequin RIP®, they achieved a faster development time and performance and quality benchmarks with a reduced bill of materials cost.

The Challenge
When a leading print OEM was looking to move to a PDF RIP technology that was easy to integrate and help to achieve quality and performance benchmarks, it contacted Global Graphics Software Partner Network member, Vir Softech. As a RIP replacement service provider, the team at Vir Softech includes experienced engineers, with experts who have worked on all the major RIP technologies and understand the interfaces and functions they offer.

The Solution
Vir Softech recommended switching from the existing RIP technology to the Harlequin RIP from Global Graphics Software. Vir Softech had experience of using the Harlequin RIP in a similar project and knew it would meet the print OEM’s requirements. After a period of evaluation, including quality and performance benchmarking, the print OEM chose to use the Harlequin RIP.

Deepak Garg, managing director at Vir Softech explains the process: “The first step towards making the change was to assess and understand the various features and functions offered by the OEM’s print devices.”

After investigating, the team prepared a design document highlighting:

  • The OEM’s product features that interact with the RIP technology
  • How these product features are implemented
  • The various RIP interfaces which are used to implement these features and functions

Deepak continues: “Once the print OEM decided to go ahead, we prepared another document highlighting how to achieve these functions using the Harlequin interfaces. Some functions or features could not be implemented using Harlequin directly, such as special color handling, spot color replacement, extraction of cut data etc., so we contacted Global Graphics Software who was able to provide a design showing how these functions could be implemented using Harlequin. We then prepared a proof-of-concept, or working implementation, which demonstrated how the Harlequin RIP would work with the print OEM’s print devices. With Harlequin, such a prototype can usually be achieved within three to six months.”

The Result
Development time was much shorter than usual for such an ambitious undertaking, greatly reducing costs and enabling the print OEM to drive their revenue earlier than originally expected. The print OEM began using the Harlequin RIP, instantly meeting its quality and performance targets.

The print OEM says: “The Harlequin RIP helped us to move to native PDF printing and achieve the performance targets for our printers. Harlequin also helped us to reduce the lead time for getting our products to market while keeping development and maintenance costs low.”

About Vir Softech
Vir Softech is a technology start-up with expertise in imaging and computer vision technologies. With a strong focus in the Print & Publishing domain, its team of experienced engineers includes experts in all aspects of imaging and RIP technologies, such as job management, job settings, color management, screening, bands generation and management, VDP and imposition etc.

The team at Vir Softech are experts in configuring RIP technologies for better performance targeted for a specific market segment such as production, commercial, large format and enterprise printing. Some of the areas where Vir Softech can help include low resource environment, implementing OEM-specific unique functions using Harlequin RIP interfaces, making use of OEM ASIC for better performance, making use of OEM hardware accelerators for some of the computer-intensive RIP operations such as color conversion, image transformations, image decoding, rendering etc and achieving PPM target of MFP for ISO test suites.

To find out more visit: www.virsoftech.com

 

 

 

Unlocking document potential

Using Mako to pre-process PDFs for print workflows follows quite naturally. With its built-in RIP, Mako has exceptional capability to deal with fonts, color, transparency and graphic complexity to suit the most demanding of production requirements.

What is less obvious is Mako’s value to enterprise print management (EPM). Complementing Mako’s support for PDF and XPS is the ability to convert from (and to) PCL5 and PCL/XL. Besides conversion, Mako can also render such documents, for example to create a thumbnail of a PCL job so that a user can more easily identify the correct document to print or move it to the next stage in a managed process. Mako’s document object model (DOM) architecture allows content to be extracted for record-keeping purposes or be added to – a watermark or barcode, for example.

Document Object Model to access the raw building blocks of documents.

The ability to look inside a document, irrespective of the format of the original, has brought Mako to the attention of electronic document and records management system (EDRMS) vendors, seeking to add value to their data extraction, search and categorization processes. Being able to treat different formats of document in the same way simplifies development and improves process efficiency.

Mako’s ability to analyse page layout and extract text in the correct reading order, or to interpret and update document metadata, is a valuable tool to developers of EDRMS solutions. In the face of GDPR (General Data Protection Regulation) and sector-specific regulations, the need for such solutions is clear. And as many of those documents are destined to be printed at some point in their lifecycle, they exist as discrete, paginated digital documents for which Mako is the key to unlocking their business value.

If you would like to discuss this or any aspect of Mako. Please email justin.bailey@globalgraphics.com

The healthy buzz of conversation at PDF 2.0 interops

Last week was the first PDF 2.0 interop event, hosted by Global Graphics in Cambridge, UK on behalf of the PDF Association. The interop was an opportunity for developers from various companies working on their support for PDF 2.0 to get together and share sample files, and to process them in their own solutions. If a sample file from one vendor isn’t read correctly by a product from another vendor the developers can then figure out why, and fix either the creation tool or the consumer, or even both, depending on the exact reason for that failure.

When we make our own PDF sample files to test the Harlequin RIP there’s always a risk that the developer making the file and the developer writing the code to consume it will make the same assumptions or misread the specification in the same way. That makes testing files created by another vendor invaluable, because it validates all of those assumptions and possible misinterpretations as well.

It’s pretty early in the PDF 2.0 process (the standard itself will probably be published later this month), which means that some vendors are not yet far enough through their own development cycles to get involved yet. But that actually makes this kind of event even more valuable for those who participate because there are no currently shipping products out there that we could just buy and make sample files with. And the last thing that any of us want to do as vendors is to find out about incompatibilities after our products are shipped and in our customers’ hands.

I can tell you that our testing and discussions at the interop in Cambridge were extremely useful in finding a few issues that our internal testing had not identified. We’re busy correcting those, and will be taking updated software to the next interop, in Boston, MA on June 12th and 13th.

If you’re a Harlequin OEM or member of the Harlequin Partner Network you can also get access to our PDF 2.0 preview code to test against your own or other partners’ products; just drop me a line. If you’re using Harlequin in production I’m afraid you’ll have to wait until we release our next major version!

If you’re a software vendor with products that consume or create PDF and you’re already working on your PDF 2.0 support I’d heartily recommend registering for the June interop. I don’t know of any more efficient way to identify defects in your implementation so you can fix them before your customers even see them. Visit https://www.pdfa.org/event/pdf-interoperability-workshop-north-america/ to get started.

And if you’re a PDF software vendor and you’re not working on PDF 2.0 yet … time to start your planning!

Getting to know PDF 2.0: not only but also!

Are you ready for PDF 2.0? Register now for the PDF 2.0 interoperability workshops in the UK and USA.

In the middle of 2017 ISO 32000-2 will be published, defining PDF 2.0.  It’s eight years since there’s been a revision to the standard. We’ve already covered the main changes affecting print in previous blog posts and here Martin Bailey, the primary UK expert to the ISO committee developing PDF 2.0, gives a roundup of a few other changes to expect.

Security
The encryption algorithms included in previous versions of PDF have fallen behind current best practices in security, so PDF adds AES-256-bit and states that all passwords used for AES-256 encryption must be encoded in Unicode.
A PDF 1.7 reader will almost certainly error and refuse to process any PDF files using the new AES-256 encryption.
Note that Adobe’s ExtensionLevel 3 to ISO 32000-1 defines a different AES-256 encryption algorithm, as used in Acrobat 9 (R=5). That implementation is now regarded as dangerously insecure and Adobe has deprecated it completely, to the extent that use of it is forbidden in PDF 2.0.
Deprecation and what this means in PDF!
PDF 2.0 has deprecated a number of implementation details and features that were defined in previous versions. In this context ‘deprecation’ means that tools writing PDF 2.0 are recommended not to include those features in a file; and that tools reading PDF 2.0 files are recommended to ignore those features if they find them.
Global Graphics has taken the deliberate decision not to ignore relevant deprecated items in PDF files that are submitted and happen to be identified as PDF 2.0. This is because it is quite likely that some files will be created using an older version of PDF and using those features. If those files are then pre-processed in some way before submitting to Harlequin (e.g. to impose or trap the files) the pre-processor may well tag them as now being PDF 2.0. It would not be appropriate in such cases to ignore anything in the PDF file simply because it is now tagged as PDF 2.0.
We expect most other PDF readers to take the same course, at least for the next few years.
And the rest…
PDF 2.0 header: It’s only a small thing, but a PDF reader must be prepared to encounter a value of 2.0 in the file header and as the value of the Version key in the Catalog.
PDF 1.7 readers will probably vary significantly in their handling of files marked as PDF 2.0. Some may error, others may warn that a future version of that product is required, while others may simply ignore the version completely.
Harlequin 11 reports “PDF Warning: Unexpected PDF version – 2.0” and then continues to process the job. Obviously that warning will disappear when we ship a new version that fully supports PDF 2.0.
UFT-8 text strings: Previous versions of PDF allowed certain strings in the file to be encoded in PDFDocEncoding or in 16-bit Unicode. PDF 2.0 adds support for UTF-8. Many PDF 1.7 readers may not recognise the UTF-8 string as UTF-8 and will therefore treat it as using PDFDocEncoding, resulting in those strings being treated as what looks like a random sequence of mainly accented characters.
Print scaling: PDF 1.6 added a viewer preferences key that allowed a PDF file to specify the preferred scaling for use when printing it. This was primarily in support of engineering drawings. PDF 2.0 adds the ability to say that the nominated scaling should be enforced.
Document parts: The PDF/VT standard defines a structure of Document parts (common called DPart) that can be used to associate hierarchical metadata with ranges of pages within the document. In PDF/VT the purpose is to enable embedding of data to guide the application of different processing to each page range.
PDF 2.0 has added the Document parts structure into baseline PDF, although no associated semantics or required processing for that data have been defined.
It is anticipated that the new ISO standard on workflow control (ISO 21812, expected to be published around the end of 2017) will make use of the DPart structure, as will the next version of PDF/VT. The specification in PDF 2.0 is largely meaningless until such time as products are written to work with those new standards.

 

The background
The last few years have been pretty stable for PDF; PDF 1.7 was published in 2006, and the first ISO PDF standard (ISO 32000-1), published in 2008, was very similar to PDF 1.7. In the same way, PDF/X‑4 and PDF/X‑5, the most recent PDF/X standards, were both published in 2010, six years ago.
In the middle of 2017 ISO 32000-2 will be published, defining PDF 2.0. Much of the new work in this version is related to tagging for content re-use and accessibility, but there are also several areas that affect print production. Among them are some changes to the rendering of PDF transparency, ways to include additional data about spot colors and about how color management should be applied.

Getting to know PDF 2.0: halftones

Are you ready for PDF 2.0? Register now for the PDF 2.0 interoperability workshops in the UK and USA.

Martin Bailey, CTO, Global Graphics Software
Martin Bailey, CTO, Global Graphics Software

In the middle of 2017 ISO 32000-2 will be published, defining PDF 2.0. It’s eight years since there’s been a revision to the standard. In his next blog post about the changes afoot, Martin Bailey, the primary UK expert to the ISO committee developing PDF 2.0, looks at halftones, an area where the new specification will offer significant benefits for flexo jobs.

Lists of spot functions in halftones
PDF allows a PDF file to specify the halftone to be used for screening output in a variety of ways. The simplest is to identify a spot function by name, but that method was constrained in versions of the PDF standard up to PDF 1.7 to use only names that were explicitly listed in the specification itself. This has been a significant limitation in print sectors where custom halftones are common, such as flexography, gravure … and pretty much everywhere apart from offset plate-making!

PDF 2.0 allows the PDF file to specify the halftone dot shape as a list of spot function names, and those names no longer need to be picked from the ones specified in the standard. The renderer should use the first named spot function in the list that it supports. This allows a single file to be created that can be used in a variety of RIPs that support different sets of proprietary halftones and to select the best one available in each RIP for that specific object.

This functionality is expected to be used mainly for high-quality flexo press work, where it’s a key part of the workflow to specify which halftone should be used for each graphical element.

A PDF 1.7 reader will probably either error or completely ignore the screening information embedded in the PDF if a file using the new list form is encountered. In the flexo space that could easily cause problems on-press, so take care that you’ve upgraded your RIPs before you start to try rendering PDF files using this new capability.

Halftone Origin (HTO)
Very old versions of PDF (up to PDF 1.3) included a partial definition of an entry named HTP, which was intended to allow the location of the origin or phase of a halftone to be specified. That entry was unfortunately useless because it did not specify the coordinate system to apply and it was removed many years ago.

PDF 2.0 adds a new entry called HTO to achieve the same goal, but this time fully specified. The use case is anywhere where precise specification of the halftone phase is valuable. Examples include pre-imposed sheets for VLF plate-setters, where specifying the halftone phase for each imposed page can reduce the misalignment of halftones that can occur over very long distances, or setting the halftone phase of each of a set of step-and-repeat labels to ensure that the halftone dots are placed in exactly the same position relative to the design in each instance.

A PDF 1.7 reader will simply ignore the new key, so there’s no danger of new files causing problems in an older workflow. On the other hand, those older RIPs will render as they always have, which would be a missed opportunity for the target use cases.

Halftone selection in transparent areas
Up to PDF 1.7 there has been a requirement to apply the “default halftone” in all areas where transparency compositing has been applied. This was problematic for those print technologies where different halftones must be used for different object types to achieve maximum quality, e.g. for flexo. Transparency is used in these jobs most commonly for drop shadows, so that’s where you’re most likely to have encountered problems.

PDF 2.0 effectively gives complete freedom to renderers to apply the supplied screening parameters in whatever way they see fit, but two example implementations are provided to encourage similarity between implementations. One of those matches the requirements from PDF 1.7, while the other applies the screen defined for the top-most graphical element in areas where transparency was applied. The second one means that the screening selected for the drop shadow will now be used, matching requirements for the flexo market.

The background
The last few years have been pretty stable for PDF; PDF 1.7 was published in 2006, and the first ISO PDF standard (ISO 32000-1), published in 2008, was very similar to PDF 1.7. In the same way, PDF/X‑4 and PDF/X‑5, the most recent PDF/X standards, were both published in 2010, six years ago.

In the middle of 2017 ISO 32000-2 will be published, defining PDF 2.0. Much of the new work in this version is related to tagging for content re-use and accessibility, but there are also several areas that affect print production. Among them are some changes to the rendering of PDF transparency, ways to include additional data about spot colors and about how color management should be applied.

Getting to know PDF 2.0 – update from Down Under

Are you ready for PDF 2.0? Register now for the PDF 2.0 interoperability workshops in the UK and USA.

Martin Bailey, CTO, Global Graphics Software
Martin Bailey, CTO, Global Graphics Software

I’ve been in the ISO PDF committee meeting in Sydney, Australia for a couple of days this week to review the comments submitted to the most recent ballot on PDF 2.0. Over 100 comments were received, including some complex issues around digital signatures, structure tagging (especially lists), optional content, document parts and soft masks. In all cases the committee was able to reach a consensus on what should be done for PDF 2.0.

The plan is now for one more ballot, the responses to which will be reviewed in Q2 next year, with an expectation that final text for PDF 2.0 will be delivered to ISO for publication shortly thereafter.

So we’re still on track for publication next year.

All of which means that it’s past time that a couple of PDF’s unsung heroes were acknowledged. The project leaders for PDF 2.0 have invested very substantial amounts of time and mental energy updating text in response to comments and ballots over the last several years. When somebody like me requests a change it’s the project leaders who help to double-check that every last implication of that change is explored to ensure that we don’t have any inconsistency.

So a big thank you to Duff Johnson of the PDF Association and Peter Wyatt of CISRA (Canon)!

It’s also worth noting that one of the significant improvements in PDF 2.0 that probably won’t get highlighted elsewhere is that the text now is much more consistent. When you’re writing a detailed technical document 1000 pages long it’s inevitable that some disconnections between different sections will creep in. PDF 2.0 illustrates the value of a broad group of people from many countries and many industries reviewing text in the ISO process: we’ve managed to stamp on many of those cases in this new version.

Getting to know PDF 2.0: rendering PDF transparency

Are you ready for PDF 2.0? Register now for the PDF 2.0 interoperability workshops in the UK and USA.

ads_spread

In the middle of 2017 ISO 32000-2 will be published, defining PDF 2.0.  It’s eight years since there’s been a revision to the standard. In the second of a series of blog posts Martin Bailey, the primary UK expert to the ISO committee developing PDF 2.0, looks at the changes to rendering PDF transparency for print.
These changes are all driven by what we’ve learned in the last few years about where the previous PDF standards could trip people up in real-world jobs.
Inheritance of transparency color spaces
Under certain circumstances a RIP will now automatically apply a color-managed (CIEBased) color space when a device color space (such as DeviceCMYK) is used in a transparent object. It will do that by inheriting it from a containing Form XObject or the current page.
That sounds very technical, but the bottom line is that it will now be much easier to get the correct color when imposing multiple PDF files from different sources together. That’s especially the case when you’re imposing PDF/X files that use different profiles in their output intents, even though they may all be intended for the same target printing condition. The obvious examples of this kind of use case is placing display advertising for publications, or gang-printing.
We’ve tried hard to minimize impact on existing workflows in making these improvements, but there will inevitably be some cases where a PDF 2.0 workflow will produce different results from at least some existing solutions, and this is one case where that could happen. But we believe that the kinds of construct where PDF 2.0 will produce different output are very uncommon in PDF files apart from in the cases where it will provide a benefit by allowing a much closer color match to the designer/advertiser’s goal than could be achieved easily before.
Clarifications on when object colors must be transformed to the blend color space
The ISO PDF 1.7 standard, and all previous PDF specifications were somewhat vague about exactly when the color space of a graphical object involved with PDF transparency needed to be transformed into the blending color space. The uncertainty meant that implementations from different vendors could (and sometimes did) produce very different results.
Those statements have been greatly clarified in PDF 2.0.
This is another area where an upgrade to a PDF 2.0 workflow may mean that your jobs render slightly differently … but the up-side is that if you run pre-press systems or digital presses from multiple vendors they should now all be more similar to each other.
As a note to Harlequin RIP users, the new rules are in line with the way that Harlequin has always behaved; in other words, you won’t see any changes in this area when you upgrade.
ColorDodge & Burn
It tends to be taken for granted that the older PDF specifications must match what Adobe® Acrobat® does, but that’s not always correct. As an example, the formulae for the ColorDodge and ColorBurn transparency blending modes in the PDF specification have never matched the implementation in Acrobat. In pursuit of compatibility Harlequin was changed to match Acrobat rather than the specification many years ago. In PDF 2.0 the standard is finally catching up with reality and now both Acrobat and Harlequin will be formally ‘correct’!
The background
The last few years have been pretty stable for PDF; PDF 1.7 was published in 2006, and the first ISO PDF standard (ISO 32000-1), published in 2008, was very similar to PDF 1.7. In the same way, PDF/X 4 and PDF/X 5, the most recent PDF/X standards, were both published in 2010, six years ago.
In the middle of 2017 ISO 32000-2 will be published, defining PDF 2.0. Much of the new work in this version is related to tagging for content re-use and accessibility, but there are also several areas that affect print production. Among them are some changes to the rendering of PDF transparency, ways to include additional data about spot colors and about how color management should be applied.

Sign up to the Global Graphics newsletter here for regular updates.

Getting to know PDF 2.0

Are you ready for PDF 2.0? Register now for the PDF 2.0 interoperability workshops in the UK and USA.

Just when you’ve all cozied down with PDF 1.7 what happens?  Yes, that’s right.  A new standard rears its head.

Around the middle of 2017 the ISO committee will publish PDF 2.0 (ISO 32000-2). So by the end of 2017 you’ll probably need to be considering how to ensure that your workflow can handle PDF 2.0 files correctly.

As the primary UK expert to this committee I thought I’d give you a heads up now on what to expect.  And over the coming months via this blog and our newsletter I’ll endeavor to keep you posted on what to look out for as far as print is concerned.  Because, of course, there are many aspects to the standard that do not concern print at all.  For instance there are lots of changes in areas such as structure tagging for accessibility and digital signatures that might be important for business and consumer applications.

As you probably already know, in 2008 Adobe handed over ownership and development of the PDF standard to the International Standards Organization.  Since that time I’ve been working alongside other experts to ensure that standards have real-world applicability.

And here’s one example relating to color.

The printing condition for which a job was created can be encapsulated in professional print production jobs by specifying an “output intent” in the PDF file. The output intent structure was invented for the PDF/X standards, at first in support of pre-flight, and later to enable color management at the print site to match that used in proofing at the design stage.

But the PDF/X standards only allow a single output intent to be specified for all pages in a job.

PDF 2.0 allows separate output intents to be included for every page individually. The goal is to support jobs where different media are used for various pages, e.g. for the first sheet for each recipient of a transactional print job, or for the cover of a saddle-stitched book. The output intents in PDF 2.0 are an extension of those described in PDF/X, and the support for multiple output intents will probably be adopted back into PDF/X-6 and into the next PDF/VT standard.

But of course, like many improvements, this one does demand a little bit of care. A PDF 1.7 or existing PDF/X reader will ignore the new page level output intents and could therefore produce the wrong colors for a job that contains them.
In my next post I’ll be covering changes around live transparency in PDF 2.0.  Bet you can’t wait!
You can sign up to the Global Graphics newsletter here.

The background
The last few years have been pretty stable for PDF; PDF 1.7 was published in 2006, and the first ISO PDF standard (ISO 32000-1), published in 2010, was very similar to PDF 1.7. In the same way, PDF/X 4 and PDF/X 5, the most recent PDF/X standards, were both published in 2010, six years ago.

In the middle of 2017 ISO 32000-2 will be published, defining PDF 2.0. Much of the new work in this version is related to tagging for content re-use and accessibility, but there are also several areas that affect print production. Among them are some changes to the rendering of PDF transparency, ways to include additional data about spot colors and about how color management should be applied.