Choosing the software to drive your digital inkjet press

When developing your first or next digital press, the software you use to drive it will be a key factor in its success, both for the data rates and output quality you can achieve. The time it takes to get your press to market based on the engineering effort involved to deliver and integrate that software is also a consideration.

A simple user interface to get  you started

The Press Operator Controller (POC) is an example front end or user interface available with Harlequin Direct™ , the software solution that drives printhead electronics at ultra-high data rates while retaining high output quality. The POC provides you with an initial working system, so you’re up and running without any significant in-house software development. We provide you with the source code so that you have the option to update and integrate it as part of your production system.

I have created a short video to show you its main functions:

You can find out more information about the Direct™ range of products by visiting our website: https://www.globalgraphics.com/products/direct

Further reading about considerations when choosing your digital inkjet press:

  1. How do I choose the right PC specification for my digital press workflow
  2. Future-proofing your digital press to cope with rising data rates
  3. Looking to reduce errors with simple job management, keep control of color, and run at ultra-high speed for jobs with variable data?

About the author

Ian Bolton, Product Manager, Direct
Ian Bolton, Product Manager – Direct

Ian has over 15 years’ experience in industry as a software engineer focusing on high performance. With a passion for problem-solving, Ian’s role as product manager for the Direct range gives him the opportunity to work with printer OEMs and break down any new technology barriers that may be preventing them from reaching their digital printer’s full potential.

Be the first to receive our news updates and product news. Why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedIn and Twitter

What’s the difference between PDF/X-1a and PDF/X-4?

PDFX-1 PDFX-4

Which PDF/X should I use?

Somebody asked me recently what the difference is between PDF/X-1a (first published in 2001) and PDF/X-4 (published in 2010). I thought this might also be interesting to a wider audience.

Both are ISO standards that deliberately restrict some aspects of what you can put into a PDF file in order to make them more reliable for delivery of jobs for professional print. But the two standards address different needs/desires:

PDF/X-1a content must all have been transformed into CMYK (optionally plus spots) already, so it puts all of the responsibility for correct separation and transparency handling onto the creation side. When it hits Harlequin, all the RIP can do is to lock in the correct overprint settings and (optionally) pre-flight the intended print output condition, as encapsulated in the output intent.

On the other hand, PDF/X-4 supports quite a few things that PDF/X-1a does not, including:

  • Device-independent color spaces
  • Live PDF transparency
  • Optional content (layers)

That moves a lot more of the responsibility downstream into the RIP, because it can carry unseparated colors and transparency.

Back when the earlier PDF/X standards were designed transparency handling was a bit inconsistent between RIPs, and color management was an inaccessible black art to many print service providers, which is why PDF/X-1a was popular with many printers. That’s not been the case for a decade now, so PDF/X-4 will work just fine.

In other words, the choice is more down to where the participants in the exchange want the responsibility to sit than to anything technical any more.

In addition, PDF/X-4 is much more easily transitioned between different presses, and even between completely different print technologies, such as moving a job from offset or flexo to a digital press. And it can also be used much more easily for digital delivery alongside using it for print. For many people that’s enough to push the balance firmly in favour of PDF/X-4.

For further reading about PDF documents and standards:

  1. Full Speed Ahead: How to make variable data PDF files that won’t slow your digital press
  2. PDF Processing Steps – the next evolution in handling technical marks

About the author

Martin Bailey, CTO, Global Graphics Software
Martin Bailey, CTO, Global Graphics Software

Martin Bailey is Global Graphics’ Chief Technology Officer. He’s currently the primary UK expert to the ISO committees maintaining and developing PDF and PDF/VT and is the author of Full Speed Ahead: how to make variable data PDF files that won’t slow your digital press, a new guide offering advice to anyone with  a stake in variable data printing including graphic designers, print buyers, composition developers and users.

Be the first to receive our news updates and product news. Why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedIn and Twitter

What causes banding in inkjet? (And the smart software solution to fix it.)

Banding, or non-uniformity, is a common problem in inkjet printing that can often result in print production downtime and loss of revenue. In this post, I’ll discuss the challenges printer OEMs and print service providers face when trying to reduce banding and provide an insight into the work we’ve been doing at Global Graphics Software to remove banding and streaking artifacts from the print output, enhancing print quality and raising productivity.

What causes banding in inkjet?

Inkjet printheads produce variable density output both across an individual printhead (known as the inkjet ‘smile’) and when comparing output from one printhead with another. The output from a printhead can also change with time, as the printhead wears or ages. Additionally, the overlapping stitch area between printheads in a single-pass printer, or between overlapping passes in a multi-pass printer, can also cause density variations. Such variable density becomes visible in the printed output as ‘banding’ and ‘stripes’, and means that it is not possible for print providers to digitally print jobs with certain image features (such as flat areas or gradients), or that they must sell the lower quality output produced at a significant discount.

Why is uniformity in inkjet a challenge?

Fixing banding or streaking in inkjet is not without its challenges:

  1. In the printer design phase, the use of interlacing in the printing process can be effective at reducing banding and improving uniformity, but significantly impacts the speed and/or cost of the printer. This approach is especially undesirable in single-pass systems, where the only option to interlace is by doubling the quantity, and hence cost, of printheads in the printer.
  2. Currently most OEMs attempt to correct uniformity issues with hardware solutions such as drive voltage tuning, but these give only limited improvement and are slow, complex and costly to implement. Most printheads have only limited voltage adjustment for banks of many nozzles together, or even the entire printhead as a whole, and do not allow adjustment of drive voltage for individual nozzles – such adjustment does not have the granularity necessary to really eliminate banding. Additionally, adjusting drive voltage to balance output density (drop volume), is undesirable as this is likely to negatively impact drop velocity, printing reliability (jetting stability) and even printhead lifetime. As the printer performance changes over time, and when printheads are replaced, service and support engineers must spend a significant amount of time onsite re-making these complex adjustments to achieve quality that is, at best, a compromise.

A solution in software

Global Graphics Software has been working with printer OEMs and print service providers to significantly enhance the quality of their inkjet output, one such company being Ellerhold AG, a leading poster printing house and press manufacturer in Germany.

Ellerhold wanted to enhance the printing quality of it’s large-format posters. Specifically, the printheads on its digital printing machine showed variation in printed density both between the heads and across each head, which produced clearly visible bands within some types of printed output.

Together with Ellerhold we were able to enhance the quality of the printed output using our ScreenPro™ screening engine with PrintFlat™ technology. ScreenPro is a very fast and efficient multi-level screening engine that mitigates artifacts such as banding or streaking and mottling from the inkjet print process and can be used in any print workflow, including Adobe®, Caldera, Esko, EFI and Sofha, with any combination of inks, substrates, printheads and electronics. In ScreenPro every nozzle can be addressed separately on any head/electronics to achieve very fine granularity. The PrintFlat technology adjusts the density within ScreenPro to produce uniform density across a print bar, thereby optimizing print quality.

The project brought many technical challenges: As it was a multi-pass process we needed to efficiently capture repeating density variations across the entire print area in an unbiased way. We carried out tests, analyzed the scanned prints and created a PrintFlat calibration workflow for the press designed to compensate for the non-uniformity in output across the print bar. The team also used a variant of Global Graphics Software’s Advanced Inkjet Screens™, available with ScreenPro and the Harlequin RIP®, which they adapted specially for scanning-head systems. These proved very effective.

You can watch the short case study film here:

PrintFlat technology provided the ideal solution, giving smooth, uniform tints and accurate tone reproduction via a simple ‘fingerprint’ calibration of the screening process, where the density compensation is then built into the screen halftone definition. This means that the PrintFlat calibration is applied during the screening process at runtime and enhances the quality of your output without any compromise on speed. The PrintFlat approach addresses every individual nozzle, has no negative effect on other printing parameters, and allows drive voltage to be used to maximize printing stability and reliability instead.

A valuable additional benefit is in increasing overall productivity. Achieving higher quality with fewer print passes allows for greater use of faster print modes. Jobs that require 4-pass quality can be printed in 2-pass mode with PrintFlat.

The process can be automated for closed-loop correction and, unlike correction by adjustment of voltages, there is no effect on jetting stability or head lifetime, nor ink pressure and timing/drop speed variation.

PrintFlat can increase the added value of your service engineers’ visits, producing a much higher quality result in less time. Alternatively, the print service provider can operate the PrintFlat calibration process to maximize their output quality themselves.

Sunflower web image before PrintFlat is applied Sunflower web image after PrintFlat is applied.Before and after images illustrating how effective PrintFlat technology is at improving print uniformity.

 

For more information about PrintFlat technology visit: https://www.globalgraphics.com/technologies/printflat

For further reading about the causes of banding and streaking in inkjet output see our related blog posts:

  1. Streaks and Banding: Measuring macro uniformity in the context of optimization processes for inkjet printing

  2. Where is screening performed in the workflow

About the author

Jimmy Fox, Inkjet Printing Technologist, Global Graphics Software
Jimmy Fox, Inkjet Printing Technologist, Global Graphics Software

Jimmy Fox is an inkjet printing technologist with 25 years’ experience of developing inkjet printers, inks and applications.

Be the first to receive our news updates and product news. Why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedIn and Twitter