What is a Raster Image Processor (RIP)?

Ever wondered what a raster image processor or RIP does? And what does RIPping a file mean? Read on to learn more about the phases of a RIP, the engine at the heart of your Digital Front End (DFE).

The RIP converts text and image data from many file formats including PDF, TIFF™ or JPEG into a format that a printing device such as an inkjet printhead, toner marking engine or laser platesetter can understand. The process of RIPping a job requires several steps to be performed in order, regardless of the page description language (such as PDF) that it’s submitted in. Even image file formats such as TIFF, JPEG or PNG usually need to be RIPped, to convert them into the correct color space, at the right resolution and with the right halftone screening for the press.

Interpreting: The file to be RIPped is read and decoded into an internal database of graphical elements that must be placed on the output. Each may be an image, a character of text (including font, size, color etc), a fill or stroke etc. This database is referred to as a display list.

Compositing: The display list is pre-processed to apply any live transparency that may be in the job. This phase is only required for any graphics in formats that support live transparency, such as PDF; it’s not required for PostScript language jobs or for TIFF and JPEG images because those cannot include live transparency.

Rendering: The display list is processed to convert every graphical element into the appropriate pattern of pixels to form the output raster. The term ‘rendering’ is sometimes used specifically for this part of the overall processing, and sometimes to describe the whole of the RIPing process.

Output: The raster produced by the rendering process is sent to the marking engine in the output device, whether it’s exposing a plate, a drum for marking with toner, an inkjet head or any other technology.

Sometimes this step is completely decoupled from the RIP, perhaps because plate images are stored as TIFF files and then sent to a CTP platesetter later, or because a near-line or off-line RIP is used for a digital press. In other environments the output stage is tightly coupled with rendering, and the output raster is kept in memory instead of writing it to disk to increase speed.

RIPping often includes a number of additional processes; in the Harlequin RIP® for example:

  • In-RIP imposition is performed during interpretation
  • Color management (Harlequin ColorPro®) and calibration are applied during interpretation or compositing, depending on configuration and job content
  • Screening can be applied during rendering. Alternatively it can be done after the Harlequin RIP has delivered unscreened raster data; this is valuable if screening is being applied using Global Graphics’ ScreenPro™ and PrintFlat™ technologies, for example.

A DFE for a high-speed press will typically be using multiple RIPs running in parallel to ensure that they can deliver data fast enough. File formats that can hold multiple pages in a single file, such as PDF, are split so that some pages go to each RIP, load-balancing to ensure that all RIPs are kept busy. For very large presses huge single pages or images may also be split into multiple tiles and those tiles sent to different RIPs to maximize throughput.

The raster image processor pipeline. The Harlequin RIP includes native interpretation of PostScript, EPS, DCS, TIFF, JPEG, PNG and BMP as well as PDF, PDF/X and PDF/VT, so whatever workflows your target market uses, it gives accurate and predictable image output time after time.
The raster image processor pipeline. The Harlequin RIP includes native interpretation of PostScript, EPS, DCS, TIFF, JPEG, PNG and BMP as well as PDF, PDF/X and PDF/VT, so whatever workflows your target market uses, it gives accurate and predictable image output time after time.

Harlequin Host Renderer brochure

 

To find out more about the Harlequin RIP, download the latest brochure here.

 

This post was first published in June 2019.

Further reading:

1. Where is screening performed in the workflow

2. What is halftone screening?

3. Unlocking document potential


To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedIn and Twitter

 

RIP technology replacement achieves a faster development time, performance and quality benchmarks

 VIR Softech replaces RIP software for major print OEM and achieves a faster development time, performance and quality benchmarks

When a major print OEM switched from a market-leading RIP technology to the Harlequin RIP®, they achieved a faster development time and performance and quality benchmarks with a reduced bill of materials cost.

The Challenge
When a leading print OEM was looking to move to a PDF RIP technology that was easy to integrate and could help to achieve quality and performance benchmarks, it contacted Global Graphics Software Partner Network member, Vir Softech. As a RIP replacement service provider, the team at Vir Softech includes experienced engineers, with experts who have worked on all the major RIP technologies and understand the interfaces and functions they offer.

The Solution
Vir Softech recommended switching from the existing RIP technology to the Harlequin RIP from Global Graphics Software. Vir Softech had experience of using the Harlequin RIP in a similar project and knew it would meet the print OEM’s requirements. After a period of evaluation, including quality and performance benchmarking, the print OEM chose to use the Harlequin RIP.

Deepak Garg, managing director at Vir Softech explains the process: “The first step towards making the change was to assess and understand the various features and functions offered by the OEM’s print devices.”

After investigating, the team prepared a design document highlighting:

  • The OEM’s product features that interact with the RIP technology
  • How these product features are implemented
  • The various RIP interfaces which are used to implement these features and functions

Deepak continues: “Once the print OEM decided to go ahead, we prepared another document highlighting how to achieve these functions using the Harlequin interfaces. Some functions or features could not be implemented using Harlequin directly, such as special color handling, spot color replacement, extraction of cut data etc., so we contacted Global Graphics Software who was able to provide a design showing how these functions could be implemented using Harlequin. We then prepared a proof-of-concept, or working implementation, which demonstrated how the Harlequin RIP would work with the print OEM’s print devices. With Harlequin, such a prototype can usually be achieved within three to six months.”

The Result
Development time was much shorter than usual for such an ambitious undertaking, greatly reducing costs and enabling the print OEM to drive their revenue earlier than originally expected. The print OEM began using the Harlequin RIP, instantly meeting its quality and performance targets.

The print OEM says: “The Harlequin RIP helped us to move to native PDF printing and achieve the performance targets for our printers. Harlequin also helped us to reduce the lead time for getting our products to market while keeping development and maintenance costs low.”

About Vir Softech
Vir Softech is a technology start-up with expertise in imaging and computer vision technologies. With a strong focus in the Print & Publishing domain, its team of experienced engineers includes experts in all aspects of imaging and RIP technologies, such as job management, job settings, color management, screening, bands generation and management, VDP and imposition etc.

The team at Vir Softech are experts in configuring RIP technologies for better performance targeted for a specific market segment such as production, commercial, large format and enterprise printing. Some of the areas where Vir Softech can help include low resource environment, implementing OEM-specific unique functions using Harlequin RIP interfaces, making use of OEM ASIC for better performance, making use of OEM hardware accelerators for some of the computer-intensive RIP operations such as color conversion, image transformations, image decoding, rendering etc and achieving PPM target of MFP for ISO test suites.

To find out more about Vir Softech.