Connecting the present to the past

I finally made time for a very overdue tidy of my filing cabinet yesterday. In between wondering why I still had receipts from travel in 2003, I tripped over a piece of history: it’s a Harlequin Harpoon board, a hardware accelerator for halftone screening and part of the technology that allowed Harlequin to become the first to RIP the Seybold Musicians’ speed test page in under 60 seconds.

A Harlequin Harpoon board, a hardware accelerator for halftone screening and part of the technology that allowed Harlequin to become the first to RIP the Seybold Musicians' speed test page.
A Harlequin Harpoon board, a hardware accelerator for halftone screening.

Speed is still a key focus for Global Graphics Software, but the Harpoon was designed for screening for offset plates, and developments in chips and compilers by Intel, AMD, Microsoft and others, together with further optimizations to Global Graphics Software code, removed the need for custom hardware for that use case fairly soon afterwards.

Today’s challenge is much more for digital presses, and especially for inkjet. Current press speeds make the idea of celebrating RIPping and screening a single page in less than a minute seem quaint and even slightly bizarre; very last millennium! The fastest digital presses now print well over the equivalent of 10,000 pages per minute, often with every page different, which means that at least something on every page must be RIPped and screened, at full engine speed.

For that kind of performance, or even a more common 100 m/min for a narrow-web label press, it’s now normal to use multiple RIPs in parallel and to share the pages out between them. This makes it tricky to use custom hardware unless that is tied to specific ink channel delivery, because otherwise it must be load-balanced in a way that complements the load-balancing across the RIPs. We still see some custom hardware associated with raster delivery to the heads in the press, but nowhere else in current systems.

For the same reason, increasing the raw speed of a single RIP is no longer a target; scheduling pages to each RIP in a cluster and managing the rasters delivered by each one, together with managing the interactions between those multiple RIPs, are far more important. System engineering is now a key part of being able to drive inkjet presses at full speed without an unfeasibly high bill of materials for the Digital Front End, almost as much as the core technologies themselves.

In other words Global Graphics’ Direct™ and SmartDFE™ technologies are the logical successors of the Harpoon board, bringing affordable and reliable speed to a new generation of printing technology. But there’s still something rather nice in being able to hold a physical piece of history in my hands!

About the author

Martin Bailey, CTO, Global Graphics Software

Martin Bailey, Distinguished Technologist, Global Graphics Software, is currently the primary UK expert to the ISO committees maintaining and developing PDF and PDF/VT and is the author of Full Speed Ahead: how to make variable data PDF files that won’t slow your digital press, a new guide offering advice to anyone with a stake in variable data printing including graphic designers, print buyers, composition developers and users.

Be the first to receive our blog posts, news updates and product news. Why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedInTwitter and YouTube

What you need to build a press that must handle variable data jobs at high speed

I’ve spoken to a lot of people about variable data printing and about what that means when a vendor builds a press or printing unit that must be able to handle variable data jobs at high speed. Over the years I’ve mentally defined several categories that such people fall into, based on the first question they ask: 

  1. “Variable data; what’s that?” 
  2. “Why should I care about variable data, nobody uses that in my industry?” 
  3. “I’ve heard of variable data and I think I need it, but what does that actually mean?” 
  4. “How do I turn on variable data optimization in Harlequin?” 

If you’re in the first two categories, I recommend that you read through the introductory chapters of our guide: “Full Speed Ahead: how to make variable data PDF files that won’t slow your digital press”, available on our website. 

And yes, unless you’re in a very specialised industry, people probably are using variable data. As an example, five years ago pundits in the label printing industry were saying that nobody was using variable data on those. Now it’s a rapidly growing area as brands realize how useful it can be and as the convergence of coding and marking with primary consumer graphics continues. If you’re a vendor designing and building a digital press your users will expect you to support variable data when you bring it to market; don’t get stuck with a DFE (digital front end) that can’t drive your shiny new press at engine speed when they try to print a variable job. 

If you’re in category 3 then you’re in luck, we’ve just published a video to explain how variable data jobs are typically put together, and then how the DFE for a digital press deconstructs the pages again in order to optimize processing speed. It also talks about why that’s so important, especially as presses get faster every year. Watch it here:
 

And if you’re in category 4, drop us a line at info@globalgraphics.com, or, if you’re already a Harlequin OEM partner, our support team are ready and waiting for your questions.

Further reading:

  1. What’s the best effective photographic image resolution for your variable data print jobs?
  2. Why does optimization of VDP jobs matter?
  3. There really are two different kinds of variable data submission!

Be the first to receive our blog posts, news updates and product news. Why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedInTwitter and YouTube

 

Digital press data rates – and why they matter

Following his post last week about the speed and scalability of your raster image processor, in this film, Martin Bailey, distinguished technologist at Global Graphics Software, explains how to determine how much raster image processor (RIP) power you need to drive a digital press by calculating the press data rate. It’s the best way of calculating how much RIP power you need in the Digital Front End (DFE) to drive it at engine speed and to ensure profitable printing.

Further reading:

  1. Harlequin Core – the heart of your digital press
  2. What is a raster image processor 
  3. Ditch the disk: a new generation of RIPs to drive your digital press
  4. Is your printer software up to the job?
  5. Where is screening performed in the workflow
  6. What is halftone screening?
  7. Unlocking document potential

To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedInTwitter and YouTube

Speed and Scalability: two things to consider when choosing a RIP for your digital inkjet press

If you’re building a digital press, or a digital front end (DFE) to drive a digital press, you want it to be as efficient and cost-effective as possible. As the trend towards printing short runs and personalization grows, especially in combination with increasing resolutions, more colorants and faster presses, the speed and scalability of the raster image processor (RIP) inside that DFE are key factors in determining profitability.

For your digital press to print at speed you’ll need to understand the amount of data that it requires, i.e. its data rate. In this film, Martin Bailey, distinguished technologist at Global Graphics Software, explains how different stages in data handling will need different data rates and how to integrate the appropriate number of RIP cores to generate that much data without inflating the bill of materials and DFE hardware.

Martin also explains that your next press may have a much higher data rate requirement than your current one.

For more information about the Harlequin Core visit: www.globalgraphics.com/harlequin

To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedInTwitter and YouTube

HP PageWide Industrial raises the bar with the Harlequin RIP

The HP T1190 digital inkjet press
The HP T1190 digital inkjet press

In this latest case study, Tom Bouman, worldwide workflow product marketing manager at HP PageWide Industrial, explains why the Harlequin RIP®, with its track record for high quality and speed and its ability to scale, was the obvious choice to use at the heart of its digital front end when the division was set up to develop presses for the industrial inkjet market back in 2008.

Today, the Harlequin RIP Core is at the heart of all the PageWide T-series presses, driving the HP Production Elite Print Server digital front end. Presses range from 20-inch for commercial printing, through to the large 110-inch (T1100 series) printers for high-volume corrugated pre-print, offering a truly scalable solution that sets the standard in performance and quality.

Read the full story here.

Further reading:

  1. Harlequin Core – the heart of your digital press
  2. What is a raster image processor 
  3. Where is screening performed in the workflow
  4. What is halftone screening?
  5. Unlocking document potential


To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedInTwitter and YouTube

Harlequin Core – the heart of your digital press

Product manager Paul Dormer gives an insight into why the Harlequin Core is the leading print OEMs’ first choice to power digital inkjet presses in this new film.

A raster image processor (RIP), Harlequin Core converts text, object and image data from file formats such as PDF, TIFF™ or JPEG, into a raster that a printing device can understand. It’s at the heart of the digital front end that drives the press.

Proven in the field for decades, Harlequin Core is known for its incredible speed and is the fastest RIP engine available. It is used in every print sector, from industrial inkjet such as textiles and flooring, to labels and packaging, commercial, transactional, and newspapers.

As presses become wider, faster, and higher resolution, handling vast amounts of data, the Harlequin Core remains the RIP of choice for many leading brands including HP, Mimaki, Mutoh, Roland, Durst, Agfa and Delphax.

Further reading:

  1. What is a raster image processor 
  2. Where is screening performed in the workflow
  3. What is halftone screening?
  4. Unlocking document potential


To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedInTwitter and YouTube

Compliance, compatibility, and why some tools are more forgiving of bad PDFs

Compliant and compatible PDF documents and the Harlequin RIP

We added support for native processing of PDF files to the Harlequin RIP® way back in 1997. When we started working on that support we somewhat naïvely assumed that we should implement the written specification and that all would be well. But it was obvious from the very first tests that we performed that we would need to do something a bit more intelligent because a large proportion of PDF files that had been supplied as suitable for production printing did not actually comply with the specification.

Launching a product that would reject many PDF files that could be accepted by other RIPs would be commercial suicide. The fact that, at the time, those other RIPs needed the PDF to be transformed into PostScript first didn’t change the business case.

Unfortunately a lot of PDF files are still being made that don’t comply with the standard, so over the almost a quarter of a century since first launching PDF support we’ve developed our own rules around what Harlequin should do with non-compliant files, and invested many decades of effort in test and development to accept non-compliant files from major applications.

The first rule that we put in place is that Harlequin is not a validation tool. A Harlequin RIP user will have PDF files to be printed, and Harlequin should render those files as long as we can have a high level of confidence that the pages will be rendered as expected.

In other words, we treat both compliance with the PDF standard and compatibility with major PDF creation tools as equally important … and supporting Harlequin RIP users in running profitable businesses as even more so!

The second rule is that silently rendering something incorrectly can be very bad, increasing costs if a reprint is required and causing a print buyer/brand to lose faith in a print service provider/converter. So Harlequin is written to require a reasonably high level of confidence that it can render the file as expected. If a developer opening up the internals of a PDF file couldn’t be sure how it was intended to be rendered then Harlequin should not be rendering it.

We’d expect most other vendors of PDF readers to apply similar logic in their products, and the evidence we’ve seen supports that expectation. The differences between how each product treats invalid PDF are the result of differences in the primary goal of each product, and therefore to the cost of output that is viewed as incorrect.

Consider a PDF viewer for general office or home use, running on a mobile device or PC. The business case for that viewer implies that the most important thing it has to do is to show as much of the information from a PDF file as possible, preferably without worrying the user with warnings or errors. It’s not usually going to be hugely important or costly if the formatting is slightly wrong. You could think of this as being at the opposite end of the scale from a RIP for production printing. In other words, the required level of confidence in accurately rendering the appearance of the page is much lower for the on-screen viewer.

You may have noticed that my description of a viewer could easily be applied to Adobe Reader or Acrobat Pro. Acrobat is also not written primarily as a validation tool, and it’s definitely not appropriate to assume that a PDF file complies with the standard just because it opens in Acrobat. Remember the Acrobat business case, and imagine what the average office user’s response would be if it would not open a significant proportion of PDF files because it flagged them as invalid!

For further reading about PDF documents and standards:

  1. Full Speed Ahead: How to make variable data PDF files that won’t slow your digital press
  2. PDF Processing Steps – the next evolution in handling technical marks

About the author

Martin Bailey, CTO, Global Graphics Software

 

 

 

Martin Bailey, Distinguished Technologist, Global Graphics Software, is currently the primary UK expert to the ISO committees maintaining and developing PDF and PDF/VT and is the author of Full Speed Ahead: how to make variable data PDF files that won’t slow your digital press, a new guide offering advice to anyone with  a stake in variable data printing including graphic designers, print buyers, composition developers and users.

Be the first to receive our news updates and product news. Why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedInTwitter, and YouTube

RIP technology replacement achieves a faster development time, performance and quality benchmarks

 VIR Softech replaces RIP software for major print OEM and achieves a faster development time, performance and quality benchmarks

When a major print OEM switched from a market-leading RIP technology to the Harlequin RIP®, they achieved a faster development time and performance and quality benchmarks with a reduced bill of materials cost.

The Challenge
When a leading print OEM was looking to move to a PDF RIP technology that was easy to integrate and could help to achieve quality and performance benchmarks, it contacted Global Graphics Software Partner Network member, Vir Softech. As a RIP replacement service provider, the team at Vir Softech includes experienced engineers, with experts who have worked on all the major RIP technologies and understand the interfaces and functions they offer.

The Solution
Vir Softech recommended switching from the existing RIP technology to the Harlequin RIP from Global Graphics Software. Vir Softech had experience of using the Harlequin RIP in a similar project and knew it would meet the print OEM’s requirements. After a period of evaluation, including quality and performance benchmarking, the print OEM chose to use the Harlequin RIP.

Deepak Garg, managing director at Vir Softech explains the process: “The first step towards making the change was to assess and understand the various features and functions offered by the OEM’s print devices.”

After investigating, the team prepared a design document highlighting:

  • The OEM’s product features that interact with the RIP technology
  • How these product features are implemented
  • The various RIP interfaces which are used to implement these features and functions

Deepak continues: “Once the print OEM decided to go ahead, we prepared another document highlighting how to achieve these functions using the Harlequin interfaces. Some functions or features could not be implemented using Harlequin directly, such as special color handling, spot color replacement, extraction of cut data etc., so we contacted Global Graphics Software who was able to provide a design showing how these functions could be implemented using Harlequin. We then prepared a proof-of-concept, or working implementation, which demonstrated how the Harlequin RIP would work with the print OEM’s print devices. With Harlequin, such a prototype can usually be achieved within three to six months.”

The Result
Development time was much shorter than usual for such an ambitious undertaking, greatly reducing costs and enabling the print OEM to drive their revenue earlier than originally expected. The print OEM began using the Harlequin RIP, instantly meeting its quality and performance targets.

The print OEM says: “The Harlequin RIP helped us to move to native PDF printing and achieve the performance targets for our printers. Harlequin also helped us to reduce the lead time for getting our products to market while keeping development and maintenance costs low.”

About Vir Softech
Vir Softech is a technology start-up with expertise in imaging and computer vision technologies. With a strong focus in the Print & Publishing domain, its team of experienced engineers includes experts in all aspects of imaging and RIP technologies, such as job management, job settings, color management, screening, bands generation and management, VDP and imposition etc.

The team at Vir Softech are experts in configuring RIP technologies for better performance targeted for a specific market segment such as production, commercial, large format and enterprise printing. Some of the areas where Vir Softech can help include low resource environment, implementing OEM-specific unique functions using Harlequin RIP interfaces, making use of OEM ASIC for better performance, making use of OEM hardware accelerators for some of the computer-intensive RIP operations such as color conversion, image transformations, image decoding, rendering etc and achieving PPM target of MFP for ISO test suites.

To find out more about Vir Softech.

Time for an update on VDP!

Over the last fifteen years variable data in digital printing has grown from “the next big thing” with vast, untapped potential to a commonly used process for delivering all manner of personalized information. VDP is used for everything from credit card bills and bank statements to direct mail postcards and personalized catalogues, from college enrolment packs to Christmas cards and photobooks, from labels to tickets, checks to ID cards.

This huge variety of jobs is created and managed by an equally huge variety of software, from specialist composition tools to general purpose design applications carefully configured for VDP. And they are consumed by workflows involving (or even completely within) the Digital Front End (DFE) for a digital production press, where jobs must be imposed, color managed.

Time, then, to update our popular “Do PDF/VT Right” guide which has had thousands of downloads since it was first published in 2014 not to mention the number of printed copies distributed at trade shows and industry events.

Do PDF/VT Right - How to make problem-free PDF files for variable data printing
Do PDF/VT Right – How to make problem-free PDF files for variable data printing

In addition to a general overhaul there is a new section on the new ISO 21812 standard that allows workflow controls to be added to PDF files, and notes on Harlequin-specific hints, to get even more speed out of your DFE if you are a Harlequin user.

The goal remains the same: to provide a set of actionable recommendations that help you ensure that your jobs don’t slow down the print production workflow … without affecting the visual appearance that you’re trying to achieve. As a side benefit, several of the recommendations set out below will also ensure that your PDF files can be delivered more efficiently on the web and to PDF readers on mobile devices in a cross-media publishing environment.

Some of the recommendations made in this guide are things that a graphic designer can apply quickly and easily, using their current tools. Others are intended more for the software companies building composition tools. If all of us work together we can greatly reduce the chance of that “heart-attack” job; the one that absolutely, positively must be in the post today … but that runs really slowly on the press.

Download your copy here .

What’s new in Harlequin Version 12?

Yesterday saw the launch of the latest version of the Harlequin RIP®. It’s the first major PDF RIP for production printing to offer compatibility with the PDF 2.0 standard and is packed with features for high-speed digital printing, including Advanced Inkjet Screens™ that improve output quality, further additions for labels and packaging applications, and new features for wide format and envelope printing.

Check out the video, where Global Graphics CTO Martin Bailey introduces Version 12 and highlights compatibility with PDF 2.0, dynamic overlays and In-RIP bar code generation:

You’ll also find more information on our website: https://www.globalgraphics.com/globalgraphics-software/products/harlequin-host-renderer-sdk