See SmartMedia at Fespa 2023!

Visit us at Fespa 2023 and find out more about SmartMedia, a suite of components that simplifies the process of obtaining the best quality and color output from a digital press.

We’re now counting down to Fespa 2023 – this time being held in Munich, 23 – 26 May.

We know obtaining the best color output from your digital press is a complex process and that’s why we’ve created SmartMedia™; it’s a suite of components that make it easy for press operators who are not color experts to get great color from their press. It reproduces spot colors accurately and easily using extended gamut or 7-color printing, which is particularly important for print applications such as textiles and packaging where reproducing color accurately from the original artwork is key. It’s available with SmartDFE™, the full software and hardware stack that adds a print subsystem to the fully automated smart factory.

So come along to Hall B2-Stand B55 for your personal demo. We’ll be exhibiting alongside our sister company, Meteor Inkjet, on the Hybrid Software Group stand.

There’s still time to register and receive a discount, simply use code: FESAYbxsD10.

We’re looking forward to seeing you in Hall B2, stand B55 – see you there!

#fespa2023

To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedIn,  Twitter and YouTube


Farewell “Harlequin Host Renderer”, hello “Harlequin Core”

We’ve now been shipping the Harlequin Host Renderer™ (HHR) to OEMs and partners for over a decade, driving digital printers and presses. Back then Harlequin was our only substantial software component for use in digital front ends (DFEs), and we just came up with a name that seemed to describe what it did.

Since then our technology set includes a component that can be used upstream of the RIP, for creating, modifying, analyzing, visualizing, etc page description languages like PDF: that’s Mako™. And we’ve also added a high-performance halftone screening engine: ScreenPro™.

We’ve positioned these components as a “Core” range and their names reflect this: “Mako Core” and “ScreenPro Core”. We also added higher level components in our Direct™ range, for printer OEMs who don’t want to dig into the complexities of system engineering, or who want to get to market faster.

Harlequin is already part of Harlequin Direct™, and we’re now amending the name of the SDK to bring it into line with our other “Core” component technologies. The diagram below shows how those various offerings fit together for a wide range of digital printer and press vendors (please click on it for a better view).

So, farewell “Harlequin Host Renderer”, hello “Harlequin Core”.

Global Graphics Software product entry point diagram

Further reading:

1. What is a Raster Image Processor (RIP)

To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedInTwitter and YouTube

Ditch the disk: a new generation of RIPs to drive your digital press

Vast amounts of data can slow down your digital press resulting in wasted product or delayed delivery times.
Vast amounts of data can slow down your digital press resulting in wasted product or delayed delivery times.

In this post, Global Graphics Software’s product manager for Mako, David Stevenson, explores the challenge of printing large amounts of raster data and the options available to ensure that data doesn’t slow down your digital press:

The print market is increasingly moving to digital: digital printing offers many advantages over conventional printing, the most valuable of these is mass-produced, personalized output making every copy of the print different. At the same time  digital presses are getting faster, wider, and printing at higher resolutions with extended gamut color becoming common place.

To drive the new class of digital presses, you need vast amounts of raster data every second. Traditional print software designed for non-digital workflows attempts to handle this vast amount of data by RIPping ahead, storing rasters to physical disks. However, the rate at which data is needed for the digital press causes disk-based workflows to rapidly hit the data rate boundary. This is the point where even state-of-the-art storage devices are simply too small and slow for the huge data rates required to keep the press running at full rated speed.

This is leading to a new generation of RIPs that ditch the disk and RIP print jobs on the fly directly to the press electronics. As well as driving much higher data rates, it also has the benefit of no wasted time RIPping ahead.

As you can imagine, RIPping directly to the press electronics presents some engineering challenges. For example, two print jobs may look identical before and after printing, but the way in which they have been made can cause them to RIP at very different rates. Additionally, your RIP of choice can have optimizations that make jobs constructed in certain ways to RIP faster or slower. This variability in print job and RIP time is a bit like playing a game of Russian roulette: if you lose the press will be starved of data causing wasted product or delivery delays.

With a RIP driving your press directly you need to have confidence that all jobs submitted can be printed at full speed. That means you need the performance of each print job and page to be predictable and you need to know what speed the press can be run at for a given combination of print Job, RIP and PC.

Knowing this, you may choose to slow down the press so that your RIP can keep up. Better still, keep the press running at full speed by streamlining the job with knowledge of optimizations that work well with your choice of RIP.

Or you could choose to return the print job to the generator with a report explaining what is causing it to run slowly. Armed with this information, the generator can rebuild the job, optimized for your chosen RIP.

Whatever you choose, you will need predictable print jobs to drive your press at the highest speed to maximize your digital press’s productivity.

If you want to know more about the kind of job objects and structure that can slow RIPs down, and the challenge of producing predictable jobs, download this guide: Full Speed Ahead – how to make variable data PDF files that won’t slow your digital press.

You can also find out more about software to optimize both PDFs and non-PDFs for your digital press by visiting our website.

Further reading:

Is your printer software up to the job? The impact of rising data rates on software evolved from traditional print processes 

Future-proofing your digital press to cope with rising data rates

Be the first to receive our news updates and product news. Why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedInTwitter, and YouTube

Compliance, compatibility, and why some tools are more forgiving of bad PDFs

Compliant and compatible PDF documents and the Harlequin RIP

We added support for native processing of PDF files to the Harlequin RIP® way back in 1997. When we started working on that support we somewhat naïvely assumed that we should implement the written specification and that all would be well. But it was obvious from the very first tests that we performed that we would need to do something a bit more intelligent because a large proportion of PDF files that had been supplied as suitable for production printing did not actually comply with the specification.

Launching a product that would reject many PDF files that could be accepted by other RIPs would be commercial suicide. The fact that, at the time, those other RIPs needed the PDF to be transformed into PostScript first didn’t change the business case.

Unfortunately a lot of PDF files are still being made that don’t comply with the standard, so over the almost a quarter of a century since first launching PDF support we’ve developed our own rules around what Harlequin should do with non-compliant files, and invested many decades of effort in test and development to accept non-compliant files from major applications.

The first rule that we put in place is that Harlequin is not a validation tool. A Harlequin RIP user will have PDF files to be printed, and Harlequin should render those files as long as we can have a high level of confidence that the pages will be rendered as expected.

In other words, we treat both compliance with the PDF standard and compatibility with major PDF creation tools as equally important … and supporting Harlequin RIP users in running profitable businesses as even more so!

The second rule is that silently rendering something incorrectly can be very bad, increasing costs if a reprint is required and causing a print buyer/brand to lose faith in a print service provider/converter. So Harlequin is written to require a reasonably high level of confidence that it can render the file as expected. If a developer opening up the internals of a PDF file couldn’t be sure how it was intended to be rendered then Harlequin should not be rendering it.

We’d expect most other vendors of PDF readers to apply similar logic in their products, and the evidence we’ve seen supports that expectation. The differences between how each product treats invalid PDF are the result of differences in the primary goal of each product, and therefore to the cost of output that is viewed as incorrect.

Consider a PDF viewer for general office or home use, running on a mobile device or PC. The business case for that viewer implies that the most important thing it has to do is to show as much of the information from a PDF file as possible, preferably without worrying the user with warnings or errors. It’s not usually going to be hugely important or costly if the formatting is slightly wrong. You could think of this as being at the opposite end of the scale from a RIP for production printing. In other words, the required level of confidence in accurately rendering the appearance of the page is much lower for the on-screen viewer.

You may have noticed that my description of a viewer could easily be applied to Adobe Reader or Acrobat Pro. Acrobat is also not written primarily as a validation tool, and it’s definitely not appropriate to assume that a PDF file complies with the standard just because it opens in Acrobat. Remember the Acrobat business case, and imagine what the average office user’s response would be if it would not open a significant proportion of PDF files because it flagged them as invalid!

For further reading about PDF documents and standards:

  1. Full Speed Ahead: How to make variable data PDF files that won’t slow your digital press
  2. PDF Processing Steps – the next evolution in handling technical marks

About the author

Martin Bailey, CTO, Global Graphics Software

 

 

 

Martin Bailey, Distinguished Technologist, Global Graphics Software, is currently the primary UK expert to the ISO committees maintaining and developing PDF and PDF/VT and is the author of Full Speed Ahead: how to make variable data PDF files that won’t slow your digital press, a new guide offering advice to anyone with  a stake in variable data printing including graphic designers, print buyers, composition developers and users.

Be the first to receive our news updates and product news. Why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedInTwitter, and YouTube

Shade and color variation in textile printing – why it’s important and what you can do about it

Printing soft furnishings

With fewer design limitations, a faster turnaround, no minimum run length and higher margins (not to mention reduced use of power and water, and of pollution), it’s not surprising that the digitally printed textile market is growing.1 Inkjet has certainly made textile design and printing much more flexible than screen printing – and that goes for everybody involved, from the designer through the printing company, to the buyer.

But printing textiles on inkjet doesn’t come without its challenges: as a software provider focusing on print quality issues, we often hear from print service providers who can only digitally print two thirds of the jobs they receive because they would not be paid for the quality they could achieve on the others.

Shade or color variation is a common problem. It’s not new in digital printing (it’s always been an issue for screen-printed and dyed textiles as well) and is usually managed by providing a shade band, which printer operators refer to, to check allowable color variations between pieces.

But, unlike screen-printing or dyeing, the color variation on an inkjet press can be visible over a small distance, just a few centimeters, and this results in visible bands across the output. Banding describes features that tend to be 1 – 10 cm across and they’re often caused by variation of inkjet pressure or voltage differences within the head, which typically results in a frown or smile shape. We also see a certain amount of manufacturing variation between heads so that one may print lighter or darker than the head next to it in a print bar. Some types of heads can also wear in use, which can result in less regular banding that can change over time. This means that large areas which should be flat color may not be.

When such a variation occurs it can greatly complicate a lot of post-print steps, especially if you need to put more than one piece of textile together, either in sewing or use (such as a pair of curtains). If that’s the case, then a significant difference may be unacceptable and your printing rejected by your buyer. Ultimately this leads to print service providers rejecting jobs, because they know their digital press can’t handle printing those tricky flat tints or smooth tones.

What can you do about it?

The first thing many companies do to try to overcome this banding is to adjust the voltage to the inkjet head, but this is often time-consuming and expensive because it requires an expert technician. A better alternative is to make the correction in software, which is a more cost-effective and faster solution. It means it can be automated and can act at a much finer granularity, so printing is more accurate. There’s no need to mess with controls that could damage the press, and printing companies themselves can make corrections without the vendor sending a technician on-site.

Our solution at Global Graphics Software for improving banding is PrintFlat™. It corrects tonality to hide banding based on measurements from the press. It adjusts every nozzle separately and doesn’t need a specialist engineer to make press adjustments. PrintFlat can be integrated into different digital front ends, using a variety of RIPs, including Caldera and Colorgate and, not to mention, our own Harlequin RIP®.

Over the years of working with many press manufacturers we’ve discovered that many technical issues and solutions are common across different sectors, including transactional, wide-format, commercial, labels and packaging, and industrial, including ceramics, wall coverings, flooring and of course textiles. That means that we already have years of experience in correcting for banding. Using PrintFlat in your press means print service providers can now take on those jobs they would normally reject.

To learn more about how to eliminate shade and color variation when printing on an inkjet press, listen to Global Graphics Software’s CTO Martin Bailey’s talk for FESPA 2020:

“New techniques to eliminate in-lot shade variation when printing textiles with inkjet.”

Or visit the PrintFlat website: https://www.printflat.com/

Further reading:

  1. What causes banding in inkjet? (And the smart software solution to fix it.)
  2. Streaks and Banding: Measuring macro uniformity in the context of optimization processes for inkjet printing

To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedIn and Twitter

_______________________________

  1. Digitally printed textiles are estimated to be between 2% – 5% of the total printed textiles market. Estimated at $146.5 billion in 2018 by Grand View Research

What’s the difference between PDF/X-1a and PDF/X-4?

PDFX-1 PDFX-4

Which PDF/X should I use?

Somebody asked me recently what the difference is between PDF/X-1a (first published in 2001) and PDF/X-4 (published in 2010). I thought this might also be interesting to a wider audience.

Both are ISO standards that deliberately restrict some aspects of what you can put into a PDF file in order to make them more reliable for delivery of jobs for professional print. But the two standards address different needs/desires:

PDF/X-1a content must all have been transformed into CMYK (optionally plus spots) already, so it puts all of the responsibility for correct separation and transparency handling onto the creation side. When it hits Harlequin, all the RIP can do is to lock in the correct overprint settings and (optionally) pre-flight the intended print output condition, as encapsulated in the output intent.

On the other hand, PDF/X-4 supports quite a few things that PDF/X-1a does not, including:

  • Device-independent color spaces
  • Live PDF transparency
  • Optional content (layers)

That moves a lot more of the responsibility downstream into the RIP, because it can carry unseparated colors and transparency.

Back when the earlier PDF/X standards were designed transparency handling was a bit inconsistent between RIPs, and color management was an inaccessible black art to many print service providers, which is why PDF/X-1a was popular with many printers. That’s not been the case for a decade now, so PDF/X-4 will work just fine.

In other words, the choice is more down to where the participants in the exchange want the responsibility to sit than to anything technical any more.

In addition, PDF/X-4 is much more easily transitioned between different presses, and even between completely different print technologies, such as moving a job from offset or flexo to a digital press. And it can also be used much more easily for digital delivery alongside using it for print. For many people that’s enough to push the balance firmly in favour of PDF/X-4.

For further reading about PDF documents and standards:

  1. Full Speed Ahead: How to make variable data PDF files that won’t slow your digital press
  2. PDF Processing Steps – the next evolution in handling technical marks
  3. Compliance, compatibility, and why some tools are more forgiving of bad pdfs

About the author

Martin Bailey, CTO, Global Graphics Software
Martin Bailey, CTO, Global Graphics Software

Martin Bailey is Global Graphics’ Chief Technology Officer. He’s currently the primary UK expert to the ISO committees maintaining and developing PDF and PDF/VT and is the author of Full Speed Ahead: how to make variable data PDF files that won’t slow your digital press, a new guide offering advice to anyone with  a stake in variable data printing including graphic designers, print buyers, composition developers and users.

Be the first to receive our news updates and product news. Why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedIn and Twitter

How do I choose the right PC specification for my digital press workflow?

When planning the implementation of your first or next digital press, the PC specification you choose to run your software workflow will play an important part in the data rates you will be able to achieve. Assuming you are not bottlenecked by disk drive performance due to requiring intermediate disk accesses, you can generally expect data rates to rise with the computational power of your PC.

It might therefore make sense to review the PassMark scores for a range of CPUs within your budget and make your choice based on that, but this alone won’t be enough to tell you whether you’ll be able to drive your printer at full rated speed. Similarly, you may already have an existing PC system in mind but need to know if it will be powerful enough for your new requirements.

Ideally, you could set up an evaluation system to run some typical print jobs to get a definitive answer, but this could be costly and labor-intensive, especially if this is your first digital press.

It’s for this reason we created Direct Benchmark™: an analysis tool that exercises Harlequin Direct™, our ultra-high data rate RIPping and screening solution, with your choice of press configuration and print jobs, stepping through a tuning cycle to obtain a series of data rates and line speeds that can be achieved.

There are two main ways Direct Benchmark can help you: firstly, if you have an existing PC system to run on, you can install Direct Benchmark and gather your own results; secondly, you could base your decision on a database of Direct Benchmark results we are gathering here at Global Graphics Software from running a variety of jobs on a range of PC specifications.

Running Direct Benchmark yourself

Whilst a real Harlequin Direct system would be connected to printhead electronics and driving your press directly, the Harlequin Direct invoked by Direct Benchmark doesn’t require this connection. This makes it very quick and easy to install and start gathering performance numbers. The screenshot below shows the settings you can use to reflect your printer configuration and define the print jobs to benchmark.

During benchmarking, you will be presented with a screen showing statistics for each run and a real-time graph of data rate at the bottom, and then you will be able to export the results at the end. If you would like to see Direct Benchmark in action, you can view a short demo here:

Using the Direct Benchmark database

If you aren’t in a position to run Direct Benchmark yourself, we are in the process of gathering results for a range of press configurations and print jobs, running on a variety of PC hardware specifications. This is being conducted in conjunction with Proactive Technologies, who are providing access to some of the machines we’re using. Whilst it is too early to draw any conclusions or share our results at this stage, if you have some typical print jobs and a press configuration in mind, please get in touch with me, ian.bolton@globalgraphics.com, because we may be able to generate the results for you.

For more information about Direct, please visit globalgraphics.com/direct

To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedIn and Twitter

About the author:

Ian Bolton, Product Manager, Direct
Ian Bolton, Product Manager – Direct

Ian has over 15 years’ experience in industry as a software engineer focusing on high performance. With a passion for problem-solving, Ian’s role as product manager for the Direct range gives him the opportunity to work with printer OEMs and break down any new technology barriers that may be preventing them from reaching their digital printer’s full potential.

 

Future-proofing your digital press to cope with rising data rates

When we hear the phrase “big data”, we’re meant to think of extremely large data sets that are too complex to process in traditional ways. But, in the context of the next generation of digital presses, you’d be forgiven for thinking it refers to the ultra-high data rates required to drive them.

For example, consider a typical narrow-web label press: 13 inches (330mm) wide, 4 colors, 600x600dpi, running at 230 fpm (70m/min). This requires 0.9 GB/s of raster data to drive it at its rated speed.

Assuming next year’s press adds three more colors (Orange, Green and White) and is upgraded to 1200x1200dpi and expected to run a little faster at 330 fpm (100m/min), the required data rate will jump to 8.6 GB/s: almost a factor of ten increase!

Already this is a data rate far in excess of what the fastest solid-state drives can manage, so what hope is there for a traditional disk-based workflow when moving to 20 inches wide, duplex or 200m/min? Clearly, any part of the workflow involving a disk drive is going to become a bottleneck.

Ditch the disk with Direct
Ditch the disk. Rather than write intermediate raster files to disk between RIPping and screening, or between screening and the printhead electronics, everything takes place in memory.

This was one of the reasons behind the creation of Direct™, the integrated software pipeline we announced at the end of April. Rather than write intermediate raster files to disk between RIPping and screening, or between screening and the printhead electronics, everything takes place in memory.

There’s more to future-proofing your press than eliminating comparatively slow disk accesses, however. You’ll need a system that’s scalable and built from the fastest components, which is why Harlequin Direct™ is composed from a configurable number of Harlequin Host Renderer™ and ScreenPro™ instances working in parallel to make the best of the most powerful desktop PCs available.

When it comes to adding new colors or supporting duplex, the scalability extends to multiple Harlequin Directs across multiple PCs, one per print bar.

When it comes to adding new colors or supporting duplex, the scalability extends to multiple Harlequin Directs across multiple PCs, one per printbar.

An added advantage of this approach is that each printbar need not use the same resolution or drop-count etc. For example, you might wish to use a lower resolution and disable color management for white or varnish. Our Press Operator Controller user interface is supplied to manage your configuration, along with submitting and controlling your print jobs.

Our Press Operator Controller user interface is supplied to manage your configuration, along with submitting and controlling your print jobs.

The beauty of a software-only solution like Direct is that once you have built it into your workflow, you are free to upgrade your PCs over time for greater performance without any further software integration expense. A Direct-based system will evolve as your needs evolve, making it the ideal choice for future-proofing your next digital press.

For more information about Direct, please visit globalgraphics.com/direct.

To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Ian Bolton, Product Manager, Direct
Ian Bolton, Product Manager, Direct

About the author:
Ian has over 15 years’ experience in industry as a software engineer focusing on high performance. With a passion for problem-solving, Ian’s role as product manager for the Direct range gives him the opportunity to work with printer OEMs and break down any new technology barriers that may be preventing them from reaching their digital printer’s full potential.

What’s new in Harlequin Version 12?

Yesterday saw the launch of the latest version of the Harlequin RIP®. It’s the first major PDF RIP for production printing to offer compatibility with the PDF 2.0 standard and is packed with features for high-speed digital printing, including Advanced Inkjet Screens™ that improve output quality, further additions for labels and packaging applications, and new features for wide format and envelope printing.

Check out the video, where Global Graphics CTO Martin Bailey introduces Version 12 and highlights compatibility with PDF 2.0, dynamic overlays and In-RIP bar code generation:

You’ll also find more information on our website: https://www.globalgraphics.com/globalgraphics-software/products/harlequin-host-renderer-sdk