Full Speed Ahead: How to make variable data PDF files that won’t slow your digital press

The use of variable data has increased exponentially over the past five years and is emerging in new applications such as industrial inkjet. Yet poorly designed variable data PDF files disrupt production and reduce ROI.

Watch the recent webinar with Global Graphics Software’s CTO Martin Bailey, the author of Full Speed Ahead, a new guide to offer advice to anyone with a stake in variable data printing, including graphic designers, print buyers, production managers, press operators, composition tool developers and users.

In the webinar Martin presents an overview of the guide and highlights some of the key tips and tricks for graphic designers, prepress and print service providers, showing how, when they all work together, VDP jobs can fly through digital presses.

Sponsored by Delphax Solutions, Digimarc, HP Indigo, HP PageWide Industrial, HYBRID Software, Kodak, Racami and WhatTheyThink, the guide is a practical format for easy reference and includes:

• Tips and tricks for making fast, efficient PDF files for variable data printing
• Helpful illustrations, photos and explanatory diagrams
• Real examples from industry

You can download your copy here: https://www.globalgraphics.com/full-speed-ahead

For further reading about PDF documents and standards:

  1. PDF Processing Steps – the next evolution in handling technical marks

To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedIn and Twitter

Harlequin RIP gains Ghent PDF Output Suite 5 compliancy

We’ve just added the Harlequin RIP® to the list of products certified as compliant with the Ghent Workgroup’s Output Suite 5 at https://www.gwg.org/ghent-pdf-output-suite-5-compliancy/

It was an interesting exercise, not because it was difficult, but because we started with a bit of archaeology. Back in February 2003 we published an “Application Data Sheet” of instructions for configuring versions 5.3 and 5.5 of the Harlequin RIP to render PDF/X-1a files. We followed that up with another edition for Harlequin 6 (the Eclipse release), addressing PDF/X-3 as well in 2004, and then for Harlequin 7 (Genesis) in 2005.

After that it seemed that PDF/X was sufficiently well understood and so widely adopted in the marketplace that we didn’t need to continue the series. Added to that, we’d added the ability for Harlequin RIPs to recognize PDF/X files and automatically change the RIP configuration around things like overprinting to, as we phrased it at the time, “Do the Right Thing™”.

So when we started writing up how to configure Harlequin for the GWG Output Suite we simply opened up the 2005 doc and replaced the screen grab of the user interface in Harlequin MultiRIP with a one from Harlequin 12.1. In 14 years we’ve added a few options, and, of course, a Windows 10 dialog looks a bit different to one from Windows XP!

We did have to add a couple of extra bullet points to the instructions, especially around perfecting the color management of spots being emulated in process colorants. Some of our color focus over the last decade has been on outputting to a fixed ink set, whether that’s on a digital press or for flexo or offset. So we made the point by delivering our sample output to be reviewed by the GWG as a CMYK raster file … and yes, all of the spot colors in the test suite showed up correctly in their emulations, it all passed 100%.

But that was it.

We thought about adding an indication of which RIP versions the instructions applied to, but ended up simply pointing out when a configuration item had been changed from a check-box to a three-way drop-down menu. The instructions will give you good output from all Harlequin RIPs shipped by Global Graphics in the last decade, and into the future as well.

I love it when stuff just works, and continues to just work, like this. There’s definitely a benefit to aiming to Do the Right Thing™!

Harlequin RIP® gains Ghent PDF Output Suite 5 compliancy
Harlequin RIP® gains Ghent PDF Output Suite 5 compliancy

To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Future-proofing your digital press to cope with rising data rates

When we hear the phrase “big data”, we’re meant to think of extremely large data sets that are too complex to process in traditional ways. But, in the context of the next generation of digital presses, you’d be forgiven for thinking it refers to the ultra-high data rates required to drive them.

For example, consider a typical narrow-web label press: 13 inches (330mm) wide, 4 colors, 600x600dpi, running at 230 fpm (70m/min). This requires 0.9 GB/s of raster data to drive it at its rated speed.

Assuming next year’s press adds three more colors (Orange, Green and White) and is upgraded to 1200x1200dpi and expected to run a little faster at 330 fpm (100m/min), the required data rate will jump to 8.6 GB/s: almost a factor of ten increase!

Already this is a data rate far in excess of what the fastest solid-state drives can manage, so what hope is there for a traditional disk-based workflow when moving to 20 inches wide, duplex or 200m/min? Clearly, any part of the workflow involving a disk drive is going to become a bottleneck.

Ditch the disk with Direct
Ditch the disk. Rather than write intermediate raster files to disk between RIPping and screening, or between screening and the printhead electronics, everything takes place in memory.

This was one of the reasons behind the creation of Direct™, the integrated software pipeline we announced at the end of April. Rather than write intermediate raster files to disk between RIPping and screening, or between screening and the printhead electronics, everything takes place in memory.

There’s more to future-proofing your press than eliminating comparatively slow disk accesses, however. You’ll need a system that’s scalable and built from the fastest components, which is why Harlequin Direct™ is composed from a configurable number of Harlequin Host Renderer™ and ScreenPro™ instances working in parallel to make the best of the most powerful desktop PCs available.

When it comes to adding new colors or supporting duplex, the scalability extends to multiple Harlequin Directs across multiple PCs, one per print bar.

When it comes to adding new colors or supporting duplex, the scalability extends to multiple Harlequin Directs across multiple PCs, one per printbar.

An added advantage of this approach is that each printbar need not use the same resolution or drop-count etc. For example, you might wish to use a lower resolution and disable color management for white or varnish. Our Press Operator Controller user interface is supplied to manage your configuration, along with submitting and controlling your print jobs.

Our Press Operator Controller user interface is supplied to manage your configuration, along with submitting and controlling your print jobs.

The beauty of a software-only solution like Direct is that once you have built it into your workflow, you are free to upgrade your PCs over time for greater performance without any further software integration expense. A Direct-based system will evolve as your needs evolve, making it the ideal choice for future-proofing your next digital press.

For more information about Direct, please visit globalgraphics.com/direct.

To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Ian Bolton, Product Manager, Direct
Ian Bolton, Product Manager, Direct

About the author:
Ian has over 15 years’ experience in industry as a software engineer focusing on high performance. With a passion for problem-solving, Ian’s role as product manager for the Direct range gives him the opportunity to work with printer OEMs and break down any new technology barriers that may be preventing them from reaching their digital printer’s full potential.

Mako™ 5.0 offers a wealth of new features

We’ve recently released Mako™ 5.0, the latest edition of Global Graphics Software’s digital document SDK. Mako 5.0 earns its major version increment with an upgrade to its internal RIP, new features and a reworked API to simplify implementation. Much requested by Mako customers, Mako 5.0 is the first version to preview C# as a coding alternative to C++ and opens the possibility to support other programming languages in future versions.

Mako 5.0 enables PostScript® (including EPS) files to be read directly, extending the PDL (page description language) support in Mako that already includes PDF, XPS, PCL5 and PCL/XL. Mako can read and write all these PDLs, enabling bi-directional conversion between any of these formats.

With the update of Mako’s internal RIP has come new EDS (error diffusion screens) using algorithms such as Floyd-Steinberg and Stucki. All the screening parameters are exposed via this API, and to help define them, a Windows-based desktop tool can be downloaded from the Mako documentation site. Start with settings that match the popular algorithms and preview the monochrome or color result of your settings tweaks. Then use the settings you have chosen via a button that generates the C++ you need to paste into your code.

Mako 5.0 offers several new APIs that extend its reach into the internals of PDF. For example, it’s now possible to edit property values attached to form and image XObjects. Why is this useful? In PDF, developers can put extra key-value pairs into PDF XObject dictionaries. This is often used to store in application-specific data, as well as for things like variable data tags. This development has led to a more generalized approach to examining and modifying hard-to-reach PDF objects. As ever, well-commented sample code is provided to show exactly how the new APIs work and could be applied in your application.

Finally, we took the opportunity with Mako 5.0 to make changes aimed at making the APIs more consistent in their naming, behavior or return types. Developers new to Mako will be unaware of these changes, but existing code written for Mako 4.x may require minor refactoring to work with Mako 5.0. Our support engineers are ready to assist Mako customers with any questions they have.

For more information contact David Stevenson: david.stevenson@globalgraphics.com

To be the first to receive our blog posts, news updates and product news why not subscribe to our monthly newsletter? Subscribe here

Mako™ – the print developer’s Swiss Army knife

Mako - the Swiss Army knife of SDKs!
Mako – the print developer’s Swiss Army knife.

Working with a Mako customer recently, I showed him how to code a utility to extract data from a stack of PDF invoices to populate a spreadsheet. I suppose you could describe it as reverse database publishing. This customer had originally licensed Mako to convert XPS to PDF, and later used it to generate CMYK bitmaps of the pages, i.e. using it as a RIP (raster image processor).

With this additional application of Mako, the customer observed that Mako was “like a Swiss Army knife” as it offered so many tools in one – converting, rendering, extracting, combining and processing, of pages and the components that made them up. And doing it not just for PDF but for XPS, PCL and PostScript® too. His description struck a chord with me as it seemed very appropriate. Mako does indeed offer a wide range of capabilities for processing print job formats. It’s not the fastest or feature-richest of the RIPs from Global Graphics Software – that would be Harlequin®. Or the most sophisticated and performant of screening tools – that would be ScreenPro™. But Mako can do both of those things very competently, and much more besides.

For example, we have used Mako to create a Windows desktop app to edit a PDF in ways relevant to production print workflows, such as changing spot colors or converting them to process colors. All the viewing and editing operations are implemented with Mako API calls. That fact alone emphasizes the wide range of applications to which Mako can be put, and I think, fully justifying that “Swiss Army knife” moniker.

For more information visit: www.globalgraphics.com/mako

RIP technology replacement achieves a faster development time, performance and quality benchmarks

 VIR Softech replaces RIP software for major print OEM and achieves a faster development time, performance and quality benchmarks

When a major print OEM switched from a market-leading RIP technology to the Harlequin RIP®, they achieved a faster development time and performance and quality benchmarks with a reduced bill of materials cost.

The Challenge
When a leading print OEM was looking to move to a PDF RIP technology that was easy to integrate and help to achieve quality and performance benchmarks, it contacted Global Graphics Software Partner Network member, Vir Softech. As a RIP replacement service provider, the team at Vir Softech includes experienced engineers, with experts who have worked on all the major RIP technologies and understand the interfaces and functions they offer.

The Solution
Vir Softech recommended switching from the existing RIP technology to the Harlequin RIP from Global Graphics Software. Vir Softech had experience of using the Harlequin RIP in a similar project and knew it would meet the print OEM’s requirements. After a period of evaluation, including quality and performance benchmarking, the print OEM chose to use the Harlequin RIP.

Deepak Garg, managing director at Vir Softech explains the process: “The first step towards making the change was to assess and understand the various features and functions offered by the OEM’s print devices.”

After investigating, the team prepared a design document highlighting:

  • The OEM’s product features that interact with the RIP technology
  • How these product features are implemented
  • The various RIP interfaces which are used to implement these features and functions

Deepak continues: “Once the print OEM decided to go ahead, we prepared another document highlighting how to achieve these functions using the Harlequin interfaces. Some functions or features could not be implemented using Harlequin directly, such as special color handling, spot color replacement, extraction of cut data etc., so we contacted Global Graphics Software who was able to provide a design showing how these functions could be implemented using Harlequin. We then prepared a proof-of-concept, or working implementation, which demonstrated how the Harlequin RIP would work with the print OEM’s print devices. With Harlequin, such a prototype can usually be achieved within three to six months.”

The Result
Development time was much shorter than usual for such an ambitious undertaking, greatly reducing costs and enabling the print OEM to drive their revenue earlier than originally expected. The print OEM began using the Harlequin RIP, instantly meeting its quality and performance targets.

The print OEM says: “The Harlequin RIP helped us to move to native PDF printing and achieve the performance targets for our printers. Harlequin also helped us to reduce the lead time for getting our products to market while keeping development and maintenance costs low.”

About Vir Softech
Vir Softech is a technology start-up with expertise in imaging and computer vision technologies. With a strong focus in the Print & Publishing domain, its team of experienced engineers includes experts in all aspects of imaging and RIP technologies, such as job management, job settings, color management, screening, bands generation and management, VDP and imposition etc.

The team at Vir Softech are experts in configuring RIP technologies for better performance targeted for a specific market segment such as production, commercial, large format and enterprise printing. Some of the areas where Vir Softech can help include low resource environment, implementing OEM-specific unique functions using Harlequin RIP interfaces, making use of OEM ASIC for better performance, making use of OEM hardware accelerators for some of the computer-intensive RIP operations such as color conversion, image transformations, image decoding, rendering etc and achieving PPM target of MFP for ISO test suites.

To find out more visit: www.virsoftech.com

 

 

 

Improve inkjet output quality with PrintFlat™

If you print on an inkjet press you’ll know that the problem of non-uniformity or banding is a particularly difficult one to resolve. It’s especially acute on areas of flat tints with the result that printed output is unacceptable to you and to your customers. This means you either don’t run certain jobs on your inkjet press or, in some sectors of the market, are forced to sell your output at a discount.

The good news is that with PrintFlat you have a solution that is quick to deploy and cost-effective, and it can be applied to any workflow with or without a RIP. With more press vendors adopting this technology, watch our new explainer video to see how you might benefit.

Find out more about PrintFlat here.

 

Where is screening performed in the workflow?

In my last post I gave an introduction to halftone screening. Here, I explain where screening is performed in the workflow:

 

Halftone screening must always be performed after the page description language (such as PDF or PostScript) has been rendered into a raster by a RIP … at least conceptually.

In many cases it’s appropriate for the screening to be performed by that RIP, which may mean that in highly optimized systems it’s done in parallel with the final rendering of the pages, avoiding the overhead of generating an unscreened contone raster and then screening it. This usually delivers the highest throughput.

Global Graphics Software’s Harlequin RIP® is a world-leading RIP that’s used to drive some of the highest quality and highest speed digital presses today. The Harlequin RIP can apply a variety of different halftone types while rendering jobs, including Advanced Inkjet Screens™.

But an inkjet press vendor may also build their system to apply screening after the RIP, taking in an unscreened raster such as a TIFF file. This may be because:

  • An inkjet press vendor may already be using a RIP that doesn’t provide screening that’s high enough quality, or process fast enough, to drive their devices. In that situation it may be appropriate to use a stand-alone screening engine after that existing RIP.
  • To apply closed loop calibration to adjust for small variations in the tonality of the prints over time, and to do so while printing multiple copies of the same output, in other words, without the need for re-ripping that output.
  • When a variable data optimization technology such as Harlequin VariData™ is being used that requires multiple rasters to be recomposited after the RIP. It’s better to apply screening after that recomposition to avoid visible artifacts around some graphics caused by different halftone alignment.
  • To access sophisticated features that are only available in a stand-alone screening engine such as Global Graphics’ PrintFlat™ technology, which is applied in ScreenPro™.

Global Graphics Software has developed the ScreenPro stand-alone screening engine for these situations. It’s used in production to screen raster output produced using RIPs such as those from Esko, Caldera and ColorGate, as well as after Harlequin RIPs in order to access PrintFlat.

Achieve excellent quality at high speeds on your digital inkjet press: The ScreenPro engine from Global Graphics Software is available as a cross platform development component to integrate seamlessly into your workflow solution.
Achieve excellent quality at high speeds on your digital inkjet press: The ScreenPro engine from Global Graphics Software is available as a cross platform development component to integrate seamlessly into your workflow solution.

The above is an excerpt from our latest white paper: How to mitigate artifacts in high-speed inkjet printing. Download the white paper here.

For further reading about the causes of banding and streaking in inkjet output see our related blog posts:

  1. Streaks and Banding: Measuring macro uniformity in the context of optimization processes for inkjet printing

  2. What causes banding in inkjet? (And the smart software solution to fix it.)

Be the first to receive our news updates and product news. Why not subscribe to our monthly newsletter? Subscribe here

Follow us on LinkedIn and Twitter

What is halftone screening?

Halftone screening, also sometimes called halftoning, screening or dithering, is a technique to reliably produce optical illusions that fool the eye into seeing tones and colors that are not actually present on the printed matter.

Most printing technologies are not capable of printing a significant number of different levels for any single color. Offset and flexo presses and some inkjet presses can only place ink or no ink. Halftone screening is a method to make it look as if many more levels of gray are visible in the print by laying down ink in some areas and not in others, and using such a small pattern of dots that the individual dots cannot be seen at normal viewing distance.

Conventional screening, for offset and flexo presses, breaks a continuous tone black and white image into a series of dots of varying sizes and places these dots in a rigid grid pattern. Smaller dots give lighter tones and the dot sizes within the grid are increased in size to give progressively darker shades until the dots grow so large that they tile with adjacent dots to form a solid of maximum density (100%). But this approach is mainly because those presses cannot print single pixels or very small groups, and it introduces other challenges, such as moiré between colorants and reduces the amount of detail that can be reproduced.

Most inkjet presses can print even single dots on their own and produce a fairly uniform tone from them. They can therefore use dispersed screens, sometimes called FM or stochastic halftones.

A simple halftone screen
A simple halftone screen.

 

A dispersed screen uses dots that are all (more or less) the same size, but the distance between them is varied to give lighter or darker tones. There is no regular grid placement, in fact the placement is more or less randomized (which is what the word ‘stochastic’ means), but truly random placement leads to a very ‘noisy’ result with uneven tonality, so the placement algorithms are carefully set to avoid this.

Inkjet is being used more and more in labels, packaging, photo finishing and industrial print, all of which often use more than four inks, so the fact that a dispersed screen avoids moiré problems is also very helpful.

Dispersed screening can retain more detail and tonal subtlety than conventional screening can at the same resolution. This makes such screens particularly relevant to single-pass inkjet presses, which tend to have lower resolutions than the imaging methods used on, say, offset lithography. An AM screen at 600 dots per inch (dpi) would be very visible from a reading distance of less than a meter or so, while an FM screen can use dots that are sufficiently small that they produce the optical illusion that there are no dots at all, just smooth tones. Many inkjet presses are now stepping up to 1200dpi, but that’s still lower resolution than a lot of offset and flexo printing.

This blog post has concentrated on binary screening for simplicity. Many inkjet presses can place different amounts of ink at a single location (often described as using different drop sizes or more than one bit per pixel), and therefore require multi-level screening. And inkjet presses often also benefit from halftone patterns that are more structured than FM screens, but that don’t cluster into discrete dots in the same way as AM screens.

 

The above is an excerpt from our latest white paper: How to mitigate artifacts in high-speed inkjet printing. Download the white paper here.

Time for an update on VDP!

Over the last fifteen years variable data in digital printing has grown from “the next big thing” with vast, untapped potential to a commonly used process for delivering all manner of personalized information. VDP is used for everything from credit card bills and bank statements to direct mail postcards and personalized catalogues, from college enrolment packs to Christmas cards and photobooks, from labels to tickets, checks to ID cards.

This huge variety of jobs is created and managed by an equally huge variety of software, from specialist composition tools to general purpose design applications carefully configured for VDP. And they are consumed by workflows involving (or even completely within) the Digital Front End (DFE) for a digital production press, where jobs must be imposed, color managed.

Time, then, to update our popular “Do PDF/VT Right” guide which has had thousands of downloads since it was first published in 2014 not to mention the number of printed copies distributed at trade shows and industry events.

Do PDF/VT Right - How to make problem-free PDF files for variable data printing
Do PDF/VT Right – How to make problem-free PDF files for variable data printing

In addition to a general overhaul there is a new section on the new ISO 21812 standard that allows workflow controls to be added to PDF files, and notes on Harlequin-specific hints, to get even more speed out of your DFE if you are a Harlequin user.

The goal remains the same: to provide a set of actionable recommendations that help you ensure that your jobs don’t slow down the print production workflow … without affecting the visual appearance that you’re trying to achieve. As a side benefit, several of the recommendations set out below will also ensure that your PDF files can be delivered more efficiently on the web and to PDF readers on mobile devices in a cross-media publishing environment.

Some of the recommendations made in this guide are things that a graphic designer can apply quickly and easily, using their current tools. Others are intended more for the software companies building composition tools. If all of us work together we can greatly reduce the chance of that “heart-attack” job; the one that absolutely, positively must be in the post today … but that runs really slowly on the press.

Download your copy here .